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Quantum graphs

19 edges (2 self-loops, 2 multiple, 3 unbounded),

13 vertices (1 of degree two, 3 at infinity).
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Standard NLS
The standard nonlinear Schrödinger equation (a.k.a. NLS) is

ı
@ 

@t
= �� + �| |2� ,

with  (t, x) : R+ ⇥ Rd ! C, � 2 R and � > 0.

References: e.g. [Ginibre, Velo, ANIHPA ’78&’85, JFA ’79, ANIHPC ’84],
[Weinstein, CMP ’83], [Kato, ANIHPA ’87], [Sulem, Sulem, ’99], [Cazenave,

’03].

Applications:

(i) laser beams: e.g. [Rasmussen, Rypdal, Phys. Scr. ’86];

(ii) Bose-Einstein condensates (a.k.a. BEC): e.g. [Dalfovo, Giorgini,

Pitaevskii, Stringari, RevModPhys ’99];

(iii) other applications: e.g. [Malomed, ’05]:
 nonlinear optics, plasma waves, FitzHugh-Nazumo

model,...
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Effective equation
A system of N quantum particles with positions x1, . . . , xN 2 R3 is
described by a wave function  (t, x1, . . . , xN) that satisfies

ı
@ 

@t
=

✓
��x1,...,xN + a(N)

X

j>i

V
�
b(N)(xi � xj)

�◆
 .

"

Kinetic energy
of the particles

For a wide class of V and for suitable a(·) and b(·) and for large N,

00  (t, x1, . . . , xN)   (t, x1) . . . (t, xN) 00

with  satisfying the NLS (with � = 1):

Gain: factorization and reduction of complexity.

Loss: from linear to nonlinear.

Hot topic in mathematical physics:
 Adami, Bardos, Brennecke, Erdos, Frank Golse, Lewin, Lieb, Loss, Paul,

Pickl, Rodnianski, Rougerie, Schlein, Seiringer, Solovej, Sphon, Teta, Teufel,

Yau, Yngvason... a
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Concentrated nonlinearity
Question:
 what if the particles are forced (e.g., by a confining potential)

to concentrate in a region small with respect to the wavelength
of the particles? Which is the best effective model?

The NLS with concentrated nonlinearity (a.k.a. CNLS), i.e.

a

ı
@ 

@t
= �� + �| |2� �x=0, � 2 R, � > 0

again with  (t, x) : R+ ⇥ Rd ! C, but only for d=1,2,3.

Applications:

(i) Solid state physics: charge accumulation in semiconductors in
presence of an impurity;

(ii) Nonlinear optics: propagation in presence of localized defects.
 [Jona-Lasinio et al., PRB ’91], [Malomed, Azbel, PRB ’93], [Jona-Lasinio

et al., APHY ’95], [Bulashenko et al., PRB ’96], [Sukhorukov et al., PRE

’99] ...
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Nonlinear Dirac equation on graphs with localized nonlinearities:
bound states and nonrelativistic limit



Notation
A metric graph is a graph G := (V, E) s.t.:

i) G is a multigraph (i.e., self-loops, multiple edges, etc...);

ii) each edge e 2 E is associated with Ie = [0, `e ], if bounded, or
with Ie = [0, 1), if unbounded (a half-line).

References: [Exner, Keating, Kuchment, Sunada, Teplyaev, ’08], [Post, ’12],
[Berkolaiko, Kuchment, ’13].

19 edges (2 self-loops, 2 multiple, 3 unbounded),

13 vertices (1 of degree two, 3 at infinity).

Note: for bounded edges the orientation of the parametrization
xe 2 Ie is free, while for half-lines vertices at infinity correspond to
xe = +1.



Notation
Further assumptions:

i) the cardinality of V and E is finite  no periodic graphs!;

ii) G is connected (a path between each pair of vertices);

iii) G is noncompact  from i) this entails at least a half-line.

As usual, a function u : G ! C is a family of functions
u = (ue)e2E, with ue := u|Ie : Ie ! C. As a consequence,

Lebesgue: L
p(G) :=

M

e2E

L
p(Ie)  kukp

Lp(G) := kuekpLp(Ie)

Sobolev: H
1(G) :=

M

e2E

H
1(Ie)  kuk2

H1(G) := kuek2
H1(Ie)

Note: usually in the definition of H1(G) there is also a global
continuity
condition; for our purposes it is better to keep this condition
separated.
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Motivation
Supposed to be good approximations for constrained dynamics in which

transversal dimensions are small with respect to longitudinal ones.

Topical example: NonLinear Schrödinger Equation (NLSE).

 Effective model for Bose-Einstein Condensates (BEC) in
ramified

traps, for nonlinear optical fibers, etc...

Literature:

 [Gnutzmann, Smilanski, AdvPhys ’06]

 [Noja, RSTA ’14], [Adami, Serra, Tilli, RivMatUnivParma ’17]

 [Lorenzo et al., PHYSLETA ’14]



NLSE with Kirchhoff conditions
The focusing (NLSE) on metric graphs with homogeneous
Kirchhoff vertex conditions reads:

ı
@ 

@t
= �� � | |p�2 on G (p � 2) (NLSE)

��v|Ie := �v
00
e , 8e 2 E, 8v 2 dom(��),

dom(��) :=
�
ve 2 H

2(Ie), 8e 2 E, s.t. v satisties (K1)-(K2)
 

,

with

ve1(v) = ve2(v), 8e1, e2 � v, 8v 2 V\V1 (glob. cont.)
(K1)

X

e�v

dve

dxe
(v) = 0, 8v 2 V\V1

(Kirchhoff)

(K2)

where “e � v” means that e is incident at v and dve

dxe
(v) stands for

v
0
e(0) or �v

0
e(`e) depending on the orientation of Ie .
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Bound states of the NLSE
Problem: existence of bound states (B.S.), i.e. L

2-solutions of the
form

 (t, x) := e
�ı�t

u(x), � 2 R.

Definition – B.S. of the NLSE
A bound state of the (NLSE) is a function u 6⌘ 0 s.t.
u 2 dom(��) and there exists � 2 R s.t.

�u
00
e � |ue |p�2

ue = �ue , 8e 2 E.

Literature:
i) real line: e.g. [Zakharov, Shabat, JETP ’72], [Cazenave, Lions, CMP

’82];
ii) infinite N-star: e.g. [Adami, Cacciapuoti, Finco, Noja, JPA ’12 - JDE

’14 - ANIHPC ’14], [Kairzhan, Pelinovsky, JPA ’18 - JDE ’18];
ii) tadpole: e.g. [Cacciapuoti, Finco, Noja, PhysRevE ’15], [Noja,

Pelinovsky, Shaikhova, Nonlin ’15];
iv) general: e.g. [Adami, Serra, Tilli, CVPDE ’15 - JFA ’16 - CMP ’17 -

arXiv ’17].



Localized nonlinearity
Definition – Compact core
The compact core of G, denoted by K, is the metric subgraph of G
consisting of all its bounded edges.
Examples:

Problem: what happens when the nonlinearity affects only K?
([Gnutzmann, Smilanski, Derevyanko, PhysRevA ’11], [Noja, RSTA ’14])

Definition – B.S. of the NLSE with Localized Nonlinearity
A bound state of the (NLSE) with Localized Nonlinearity (L.N.) is
a function u 6⌘ 0 s.t. u 2 dom(��) and there exists � 2 R s.t.

�u
00
e � �K |ue |p�2

ue = �ue , 8e 2 E.

a
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B.S. with Localized Nonlinearity
1. [Tentarelli, JMAA ’16]:

 Existence/nonexistence of constrained minimizers of

EK(v) :=
1
2

Z

G
|v 0|2 dx � 1

p

Z

K
|v |p dx ,

on
�
kvk2

L
(G) = µ > 0

 
, in the L

2-subcritical case
p 2 (2, 6).

2. [Serra,Tentarelli, JDE ’16], [Serra,Tentarelli, NA ’16]:
 Existence/nonexistence (respectively) of constrained

critical
points of the functional EK( · ) (in the L

2-subcritical case).

3. [Dovetta,Tentarelli, arXiv ’18]:
 Existence/nonexistence of constrained minimizers of

EK( · )
in the L

2-critical case p = 6 (for a tadpole graph);
 Ongoing project.
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(iv) since (clearly) a ground state is a bound state too, the fourth column of the Table 1 has to be452

meant to refer to those bound states which are not ground states;453

(v) the constants µ1, µ2 are defined by: µ1 := N
4

p�2 c
6�p
p�2
p |K|

p�6
p�2 (with N, cp introduced in Theorem454

1–item (i)) and µ2 := (p/2)
2

p�2 C(G, p)
4�p
p�2 |K|

p�6
p�2 C(G, �)

p(p�6)
p�2 (with C(G, p), C(G, �) introduced455

in (10)-(11));456

(v) the constant µK (defined by (19)), in contrast to µR (defined by (18)), actually depends on the457

graph and, moreover, if there is more than one half-line, then existence is guaranteed only458

provided that µK 6= µR.459

Table 1. Summarizing Table.

Exponents Ground Bound Connection NLS-NLD

NLSE p 2 (2, 4) - yes, 8µ > 0 (see box below) (see box below)

p 2 [4, 6) - yes if µ > µ1
- no if µ < µ2
- unknown if µ 2 [µ2, µ1]

- yes (and multiple) if µ is
large enough

- yes if G has a loop or
two terminal edges

- no (with �  0) if
µ < (p/2)2/(2�p)µ2

- no (with � � 0) if G
has (at most) one termi-
nal edge and no loops

- unknown otherwise

- some bounds are limits
of bounds of NLDE

- unknown if all are limits

p = 6 - yes if µ 2 [µK , µR] and
if no terminal edges and
no cycle coverings�

- no otherwise

- yes if G has a loop or
two terminal edges

- no (with � � 0) if G
has (at most) one termi-
nal edge and no loops

- unknown otherwise

- unknown

p > 6 - unknown (see box above) - unknown

NLDE p 2 (2, 6) - no - yes (infinitely many)
if � 2 (�mc2, mc2),
namely � 2 R\�(DG )

- unknown otherwise

- bounds converge (up to
subsequences) to bounds
of NLSE

- unknown if can one
avoid extracting

p = 6 - no (see box above) - unknown

p > 6 - no (see box above) - unknown

Funding: This research was partially funded by INdAM – GNAMPA Project 2018 : “Variational Problems and460

Applications”.461
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From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv ’17] proposed
the study of the NonLinear Dirac Equation (NLDE)

ı
@ 

@t
= D � | |p�2 on G (p � 2), (NLDE)

D := �ıc
d

dx
⌦ �1 +mc

2 ⌦ �3,

�1 :=

✓
0 1
1 0

◆
and �3 :=

✓
1 0
0 �1

◆
,

Applications: take into account relativistic effects.

 [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv ’17],
[Haddad, Carr, PHYSD ’09 - NJP ’15].
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Spinors on metric graphs
Since D is a matricial operator, the first difference with (NLSE) is
that (NLDE) has a spinorial nature; namely the unknown is a
2-spinor:

 = ( e) =

 
'

⌘

!
: G �! C2

where ' = ('e), ⌘ = (⌘e) are functions on graphs.

Lebesgue: L
p(G, C2) := {', ⌘ 2 L

p(G)}

 k kp
Lp(G,C2) := k'kp

Lp(G) + k⌘kp
Lp(G),

Sobolev: H
1(G, C2) :=

�
', ⌘ 2 H

1(G)
 

 k k2
H1(G,C2) := k'k2

H1(G) + k⌘k2
H1(G).

However, D is just formal since it is not defined at the vertices! . . .



Kirchhoff-type vertex conditions

a

a

To find a suitable s.a. realization of D

a

a

We choose the following:

D |Ie = De e := �ıc�1 
0
e +mc

2�3 e , 8e 2 E, 8 2 dom(D),

dom(D) :=
�
 2 H

1(G, C2) :  satisties (KT1)-(KT2)
 

,

with

'e1(v) = 'e2(v), 8e1, e2 � v, 8v 2 V\V1 (KT1)

X

e�v
⌘e(v)± = 0, 8v 2 V\V1 (KT2)

⌘e(v)± stands for ⌘e(0) or �⌘e(`e) depending on the orientation
of Ie .
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Kirchhoff-type vertex conditions
One can check (using [Bulla, Trenkler, JMP ’90], [Bolte, Harrison, JPA

’03],[Post, ’08], [C., Malamud, Posilicano, JDE ’13]) that:
i) D is self-adjoint;
ii) the spectrum is absolutely continuous and presents a gap, i.e.

�(D) = (�1, �mc
2] [ [mc

2,+1).

a

a

We call (KT1)-(KT2) Kirchhoff-type vertex conditions.

a

a

Why?

1. They identify (as Kirchhoff for ��) the free case: no effect at
the vertices (which are then mere junctions between the
edges).

 Introduced by [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv

’17]

(where are derived by some conservation laws).

2. They converge to the Kirchhoff ones in the nonrelativistic limit.



Quadratic form
Formally, the quadratic form associated with D should read

Q( ) := ( , D )L2(G,C2) =
1
2

Z

G
 · D dx ,

with domain H
1/2(G, C2) :=

�
', ⌘ 2 H

1/2(G)
 
.

i) the derivative of a function in H
1/2(Ie) belongs to H

�1/2(Ie),
which is not the dual of H1/2(Ie) if Ie is bounded;

ii) H
1/2(Ie) 6,! C

0(Ie) ) cannot “just add” a boundary condition

 as for ��, where the definitions of the quadratic form
and its domain are immediate, i.e.

1
2kv 0k2

L2(G), with domain H
1(G)“+”(K1).

Problem: how to define Q and dom(Q)?



Quadratic form
 There exists U unitary that transforms D into a multiplication

operator f on L
2(M, dµ).

 Hence, Q(v) := 1
2(Uv , f Uv)L2(M, dµ) and

dom(Q) :=
�
k
p

|f |UvkL2(M, dµ) < 1
 
.

This could seem quite abstract, but, by standard Interpolation
Theory,

dom(Q) =
⇥
L

2(G), dom(D)
⇤

1
2

and
H

1/2(G, C2) =
⇥
L

2(G),H1(G, C2)
⇤

1
2
,

dom(Q) ,! H
1/2(G, C2) ,! L

p(G, C2) (2  p < 1).



Back to nonlinear
Now, we have a precise meaning for (NLDE)

ı
@ 

@t
= D � | |p�2 

where D is the Dirac operator with Kirchhoff-type vertex conditions.

Goal: bound states, that is solutions of the form

 (t, x) := e
�ı!t (x), ! 2 R.

Problem: we cannot search for costrained minimizers since, the
associated

E( ) := Q( ) � 1
p

Z

G
| |p dx

is unbounded below, even if one fixes the L
2-norm

 due to the spectral properties of D, precisely to the presence
of an infinite negative portion of the spectrum.



Main results: B.S. with localized nonlinearities

In addition, we decided to first study the case of the localized
nonlinearity; that is, to search for

Definition – B.S. of the NLDE with L.N.
A B.S. of the (NLDE) with L.N. is a spinor  6⌘ 0 s.t.:

i)  2 dom(D);
ii) there exists ! 2 R s.t.

De e � �K | e |p�2  e = ! e , 8e 2 E.

Then, we proved:

Theorem 1 [T.B.C., SIMA ’19]
Let K 6= ; and let p > 2. Then, for every
! 2 (�mc

2,mc
2) = R\�(D), there exists infinitely many (distinct

pairs of) B.S. of frequency ! of the (NLDE) with L.N..



Main results: nonrelativistic limit
By the definition of D, the B.S. obtained via Theorem 1 depend on
the relativistic parameter c (the mass m) and the frequency !:
 meant as B.S. at (a fixed value) speed of light c and frequency

!.

Theorem 2 [T.B.C., SIMA’19]
Let K 6= ;, p 2 (2, 6) and � < 0. Let also (cn) and (!n) be two
real sequences such that

0 < cn,!n ! 1, !n < mc
2
n , !n � mc

2
n ! �

m
.

If
�
 n = ('n, ⌘n)T

 
is a sequence of B.S. of frequency !n of the

(NLDE)
with L.N. at speed of light cn,

'n ! u and ⌘n ! 0 in H
1(G),

where u is a B.S. of frequency � of the (NLSE) with L.N.



Remarks
B.S. EXISTENCE

1. First variational result on the B.S. of the (NLDE) on metric
graphs.

2. Differences with respect to the (NLSE) on graphs:
i) one cannot search for constrained minimizers of a proper

energy functional, since the kinetic part Q is unbounded
from below;

ii) one cannot use the adaptations of direct methods of
calculus of variations introduced for the (NLSE);

iii) Q is strongly indefinite in sign:
 more refined tools of Critical Point Theory;
 more complex geometry of the functional (linking);

iv) the spinorial nature and the implicit definition of Q:
 one cannot use of the techniques of rearrangements

and “graph surgery” developed for (NLSE).



Remarks
3. It is necessary to adapt classical techniques for (NLDE) on

standard domains (e.g. [Rabinowitz, ’80], [Esteban, Séré, CMP ’95],
[Struwe, ’08]).

NONRELATIVISTIC LIMIT

1. Actually, the B.S. converge to the (NLSE) with a pre-factor
2m in front of the nonlinearity.

2. Theorem 2 holds just in the L
2-subcritical case p 2 (2, 6).

3. As a byproduct, Theorem 2 is an existence result for the
(NLSE) parametrized by � and not by L

2-norm.

4. The meaning of the nonrelativistic limit is to investigate what
occurs when the relativistic effects become negligible (i.e.
cn ! 1):
 the convergence to (NLSE) is a rigorous justification of

the physical intuition.

 also justifies Kirchhoff-type vertex conditions.


