Graphs, hybrids and something else

R. Carlone

Università degli Studi di Napoli Federico II

Dipartimento di Matematica ed Applicazioni R.Caccioppoli

Research Team: A. Mercaldo, M.R. Posteraro

Naples - 20/10/2021

Quantum graphs

Quantum graphs

19 edges (2 self-loops, 2 multiple, 3 unbounded), 13 vertices (1 of degree two, 3 at infinity).

Quantum hybrids

Quantum hybrids

Standard NLS

The standard nonlinear Schrödinger equation (a.k.a. NLS) is

$$
\imath \frac{\partial \psi}{\partial t}=-\Delta \psi+\beta|\psi|^{2 \sigma} \psi
$$

with $\psi(t, \mathbf{x}): \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{C}, \beta \in \mathbb{R}$ and $\sigma>0$.

Standard NLS

The standard nonlinear Schrödinger equation (a.k.a. NLS) is

$$
\imath \frac{\partial \psi}{\partial t}=-\Delta \psi+\beta|\psi|^{2 \sigma} \psi
$$

with $\psi(t, \mathbf{x}): \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{C}, \beta \in \mathbb{R}$ and $\sigma>0$.
References: e.g. [Ginibre, Velo, ANIHPA '78\&'85, JFA '79, ANIHPC '84], [Weinstein, CMP '83], [Kato, ANIHPA '87], [Sulem, Sulem, '99], [Cazenave, '03].

Standard NLS

The standard nonlinear Schrödinger equation (a.k.a. NLS) is

$$
\imath \frac{\partial \psi}{\partial t}=-\Delta \psi+\beta|\psi|^{2 \sigma} \psi
$$

with $\psi(t, \mathbf{x}): \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{C}, \beta \in \mathbb{R}$ and $\sigma>0$.
References: e.g. [Ginibre, Velo, ANIHPA '78\&'85, JFA '79, ANIHPC '84], [Weinstein, CMP '83], [Kato, ANIHPA '87], [Sulem, Sulem, '99], [Cazenave, '03].

Applications:
(i) laser beams: e.g. [Rasmussen, Rypdal, Phys. Scr. '86];
(ii) Bose-Einstein condensates (a.k.a. BEC): e.g. [Dalfovo, Giorgini, Pitaevskii, Stringari, RevModPhys '99];
(iii) other applications: e.g. [Malomed, '05]:
\rightsquigarrow nonlinear optics, plasma waves, FitzHugh-Nazumo model,...

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ that satisfies

$$
\imath \frac{\partial \psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(b(N)\left(\mathbf{x}_{i}-\mathrm{x}_{j}\right)\right)\right) \psi
$$

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ that satisfies

$$
\begin{aligned}
\imath \frac{\partial \Psi}{\partial t}= & \left.\underset{\uparrow}{\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N)\right.} \sum_{j>i} V\left(b(N)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\right)\right) \Psi . \\
& \begin{array}{l}
\text { Kinetic energy } \\
\text { of the particles }
\end{array}
\end{aligned}
$$

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ that satisfies

$$
\imath \frac{\partial \Psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(b(N)\left(\mathrm{x}_{i}-\mathrm{x}_{j}\right)\right)\right) \psi .
$$

Two-body interaction potential

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ that satisfies

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(\underset{\uparrow}{ } V(N)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\right)\right) \psi . \\
\begin{array}{c}
\text { Scaling factors connected } \\
\text { to the energy of the interactions }
\end{array}
\end{gathered}
$$

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ that satisfies

$$
\imath \frac{\partial \psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(b(N)\left(\mathrm{x}_{i}-\mathrm{x}_{j}\right)\right)\right) \psi .
$$

For a wide class of V and for suitable $a(\cdot)$ and $b(\cdot)$ and for large N,

$$
" \Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right) \rightsquigarrow \psi\left(t, \mathrm{x}_{1}\right) \ldots \psi\left(t, \mathrm{x}_{N}\right) "
$$

with ψ satisfying the NLS (with $\sigma=1$):

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ that satisfies

$$
\imath \frac{\partial \psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(b(N)\left(\mathbf{x}_{i}-\mathrm{x}_{j}\right)\right)\right) \psi
$$

For a wide class of V and for suitable $a(\cdot)$ and $b(\cdot)$ and for large N,

$$
" \Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right) \rightsquigarrow \psi\left(t, \mathrm{x}_{1}\right) \ldots \psi\left(t, \mathrm{x}_{N}\right) "
$$

with ψ satisfying the NLS (with $\sigma=1$):
Gain: factorization and reduction of complexity.
Loss: from linear to nonlinear.

Effective equation

A system of N quantum particles with positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N} \in \mathbb{R}^{3}$ is described by a wave function $\Psi\left(t, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ that satisfies

$$
\imath \frac{\partial \psi}{\partial t}=\left(-\Delta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}+a(N) \sum_{j>i} V\left(b(N)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\right)\right) \psi
$$

For a wide class of V and for suitable $a(\cdot)$ and $b(\cdot)$ and for large N,

$$
" \Psi\left(t, \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right) \rightsquigarrow \psi\left(t, \mathrm{x}_{1}\right) \ldots \psi\left(t, \mathrm{x}_{N}\right) "
$$

with ψ satisfying the NLS (with $\sigma=1$):
Gain: factorization and reduction of complexity.
Loss: from linear to nonlinear.
Hot topic in mathematical physics:
\rightsquigarrow Adami, Bardos, Brennecke, Erdos, Frank Golse, Lewin, Lieb, Loss, Paul, Pickl, Rodnianski, Rougerie, Schlein, Seiringer, Solovej, Sphon, Teta, Teufel, Yau, Yngvason...

Concentrated nonlinearity

Question:
\rightsquigarrow what if the particles are forced (e.g., by a confining potential) to concentrate in a region small with respect to the wavelength of the particles? Which is the best effective model?

Concentrated nonlinearity

Question:
\rightsquigarrow what if the particles are forced (e.g., by a confining potential) to concentrate in a region small with respect to the wavelength of the particles? Which is the best effective model?

The NLS with concentrated nonlinearity (a.k.a. CNLS), i.e.

$$
\imath \frac{\partial \psi}{\partial t}=-\Delta \psi+\beta|\psi|^{2 \sigma} \psi \delta_{\mathbf{x}=0}, \quad \beta \in \mathbb{R}, \sigma>0
$$

again with $\psi(t, \mathbf{x}): \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$, but only for $\mathrm{d}=1,2,3$.

Concentrated nonlinearity

Question:
\rightsquigarrow what if the particles are forced (e.g., by a confining potential) to concentrate in a region small with respect to the wavelength of the particles? Which is the best effective model?

The NLS with concentrated nonlinearity (a.k.a. CNLS), i.e.

$$
\imath \frac{\partial \psi}{\partial t}=-\Delta \psi+\beta|\psi|^{2 \sigma} \psi \delta_{\mathbf{x}=0}, \quad \beta \in \mathbb{R}, \sigma>0
$$

again with $\psi(t, \mathbf{x}): \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$, but only for $\mathrm{d}=1,2,3$.
Applications:
(i) Solid state physics: charge accumulation in semiconductors in presence of an impurity;
(ii) Nonlinear optics: propagation in presence of localized defects.
\rightsquigarrow [Jona-Lasinio et al., PRB '91], [Malomed, Azbel, PRB '93], [Jona-Lasinio et al., APHY '95], [Bulashenko et al., PRB '96], [Sukhorukov et al., PRE '99] ...

Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit

Notation

A metric graph is a graph $\mathcal{G}:=(\mathrm{V}, \mathrm{E})$ s.t.:
i) \mathcal{G} is a multigraph (i.e., self-loops, multiple edges, etc...);
ii) each edge $e \in E$ is associated with $I_{e}=\left[0, \ell_{e}\right]$, if bounded, or with $I_{e}=[0, \infty)$, if unbounded (a half-line).

References: [Exner, Keating, Kuchment, Sunada, Teplyaev, '08], [Post, '12], [Berkolaiko, Kuchment, '13].

19 edges (2 self-loops, 2 multiple, 3 unbounded), 13 vertices (1 of degree two, 3 at infinity).

Note: for bounded edges the orientation of the parametrization $\overline{x_{e} \in l_{e}}$ is free, while for half-lines vertices at infinity correspond to $x_{e}=+\infty$.

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \quad \rightsquigarrow \quad\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(l_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \quad \rightsquigarrow \quad\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(l_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \quad \rightsquigarrow \quad\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(l_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \quad \rightsquigarrow \quad\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(l_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \quad \rightsquigarrow \quad\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(l_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$

Notation

Further assumptions:
i) the cardinality of V and E is finite \rightsquigarrow no periodic graphs!;
ii) \mathcal{G} is connected (a path between each pair of vertices);
iii) \mathcal{G} is noncompact \rightsquigarrow from i) this entails at least a half-line.

As usual, a function $u: \mathcal{G} \rightarrow \mathbb{C}$ is a family of functions $u=\left(u_{e}\right)_{e \in \mathrm{E}}$, with $u_{e}:=u_{\left.\right|_{e}}: I_{e} \rightarrow \mathbb{C}$. As a consequence,
$\underline{\text { Lebesgue: }} L^{p}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} L^{p}\left(I_{e}\right) \rightsquigarrow\|u\|_{L^{p}(\mathcal{G})}^{p}:=\left\|u_{e}\right\|_{L^{p}\left(I_{e}\right)}^{p}$
Sobolev: $H^{1}(\mathcal{G}):=\bigoplus_{e \in \mathrm{E}} H^{1}\left(I_{e}\right) \rightsquigarrow \quad\|u\|_{H^{1}(\mathcal{G})}^{2}:=\left\|u_{e}\right\|_{H^{1}\left(l_{e}\right)}^{2}$
Note: usually in the definition of $H^{1}(\mathcal{G})$ there is also a global continuity
condition; for our purposes it is better to keep this condition separated.

Motivation

Supposed to be good approximations for constrained dynamics in which transversal dimensions are small with respect to longitudinal ones.

Topical example: NonLinear Schrödinger Equation (NLSE).
\rightsquigarrow Effective model for Bose-Einstein Condensates (BEC) in ramified
traps, for nonlinear optical fibers, etc...
Literature:
\rightsquigarrow [Gnutzmann, Smilanski, AdvPhys '06]
\rightsquigarrow [Noja, RSTA '14], [Adami, Serra, Tilli, RivMatUnivParma '17]
\rightsquigarrow [Lorenzo et al., PHYSLETA '14]

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{align*}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \tag{NLSE}\\
& -\Delta v_{l_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta),
\end{align*}
$$

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{align*}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \tag{NLSE}\\
& -\Delta v_{l_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta),
\end{align*}
$$

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{aligned}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
& -\Delta v_{l_{l}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta), \\
& \operatorname{dom}(-\Delta):=\left\{v_{e} \in H^{2}\left(I_{e}\right), \forall e \in \mathrm{E} \text {, s.t. } v \text { satisties }(\mathrm{K} 1)-(\mathrm{K} 2)\right\},
\end{aligned}
$$

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{align*}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \tag{NLSE}\\
& -\Delta v_{\left.\right|_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta),
\end{align*}
$$

$$
\operatorname{dom}(-\Delta):=\left\{v_{e} \in H^{2}\left(I_{e}\right), \forall e \in \mathrm{E}, \text { s.t. } v \text { satisties }(\mathrm{K} 1)-(\mathrm{K} 2)\right\}
$$ with

$$
\begin{equation*}
v_{e_{1}}(\mathrm{v})=v_{e_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{K1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{e \succ \mathrm{v}} \frac{d v_{e}}{d x_{e}}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{K2}
\end{equation*}
$$

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{align*}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \tag{NLSE}\\
& -\Delta v_{\left.\right|_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta),
\end{align*}
$$

$$
\operatorname{dom}(-\Delta):=\left\{v_{e} \in H^{2}\left(I_{e}\right), \forall e \in \mathrm{E}, \text { s.t. } v \text { satisties }(\mathrm{K} 1)-(\mathrm{K} 2)\right\}
$$ with

$$
\begin{equation*}
v_{e_{1}}(\mathrm{v})=v_{e_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \quad \text { (glob. cont.) } \tag{K1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{e \succ \mathrm{v}} \frac{d v_{e}}{d x_{e}}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{Kirchhoff}
\end{equation*}
$$

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{align*}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \tag{NLSE}\\
& -\Delta v_{\left.\right|_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta),
\end{align*}
$$

$\operatorname{dom}(-\Delta):=\left\{v_{e} \in H^{2}\left(I_{e}\right), \forall e \in \mathrm{E}\right.$, s.t. v satisties $\left.(\mathrm{K} 1)-(\mathrm{K} 2)\right\}$, with

$$
\begin{equation*}
v_{e_{1}}(\mathrm{v})=v_{e_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \quad \text { (glob. cont.) } \tag{K1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{e \succ \mathrm{~V}} \frac{d v_{e}}{d x_{e}}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{Kirchhoff}
\end{equation*}
$$

where " $e \succ \mathrm{v}$ " means that e is incident at v

NLSE with Kirchhoff conditions

The focusing (NLSE) on metric graphs with homogeneous Kirchhoff vertex conditions reads:

$$
\begin{aligned}
& \imath \frac{\partial \psi}{\partial t}=-\Delta \psi-|\psi|^{p-2} \psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
& -\Delta v_{\left.\right|_{e}}:=-v_{e}^{\prime \prime}, \quad \forall e \in \mathrm{E}, \quad \forall v \in \operatorname{dom}(-\Delta)
\end{aligned}
$$

$$
\operatorname{dom}(-\Delta):=\left\{v_{e} \in H^{2}\left(I_{e}\right), \forall e \in \mathrm{E}, \text { s.t. } v \text { satisties }(\mathrm{K} 1)-(\mathrm{K} 2)\right\}
$$ with

$$
\begin{equation*}
v_{e_{1}}(\mathrm{v})=v_{e_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \quad \text { (glob. cont.) } \tag{K1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{e \succ \mathrm{v}} \frac{d v_{e}}{d x_{e}}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{Kirchhoff}
\end{equation*}
$$

where " $e \succ \mathrm{v}$ " means that e is incident at v and $\frac{d v_{e}}{d x_{e}}(\mathrm{v})$ stands for $v_{e}^{\prime}(0)$ or $-v_{e}^{\prime}\left(\ell_{e}\right)$ depending on the orientation of $l_{e,}$

Bound states of the NLSE

Problem: existence of bound states (B.S.), i.e. L^{2}-solutions of the form

$$
\psi(t, x):=e^{-2 \lambda t} u(x), \quad \lambda \in \mathbb{R} .
$$

Definition - B.S. of the NLSE
A bound state of the (NLSE) is a function $u \neq 0$ s.t. $u \in \operatorname{dom}(-\Delta)$ and there exists $\lambda \in \mathbb{R}$ s.t.

$$
-u_{e}^{\prime \prime}-\left|u_{e}\right|^{p-2} u_{e}=\lambda u_{e}, \quad \forall e \in \mathrm{E} .
$$

Literature:
i) real line: e.g. [Zakharov, Shabat, JETP '72], [Cazenave, Lions, CMP '82];
ii) infinite N -star: e.g. [Adami, Cacciapuoti, Finco, Noja, JPA '12- JDE '14 - ANIHPC '14], [Kairzhan, Pelinovsky, JPA '18 - JDE '18];
ii) tadpole: e.g. [Cacciapuoti, Finco, Noja, PhysRevE '15], [Noja, Pelinovsky, Shaikhova, Nonlin '15];
iv) general: e.g. [Adami, Serra, Tilli, CVPDE '15- JFA '16-CMP '17arXiv '17l.

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.

Examples:

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.

Examples:

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.
Examples:

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.
Examples:

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.
Examples:

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.
Examples:

Problem: what happens when the nonlinearity affects only \mathcal{K} ? ([Gnutzmann, Smilanski, Derevyanko, PhysRevA '11], [Noja, RSTA '14])

Localized nonlinearity

Definition - Compact core
The compact core of \mathcal{G}, denoted by \mathcal{K}, is the metric subgraph of \mathcal{G} consisting of all its bounded edges.
Examples:

Problem: what happens when the nonlinearity affects only \mathcal{K} ?
([Gnutzmann, Smilanski, Derevyanko, PhysRevA '11], [Noja, RSTA '14])
Definition - B.S. of the NLSE with Localized Nonlinearity A bound state of the (NLSE) with Localized Nonlinearity (L.N.) is a function $u \not \equiv 0$ s.t. $u \in \operatorname{dom}(-\Delta)$ and there exists $\lambda \in \mathbb{R}$ s.t.

$$
-u_{e}^{\prime \prime}-\chi_{\mathcal{K}}\left|u_{e}\right|^{p-2} u_{e}=\lambda u_{e}, \quad \forall e \in \mathrm{E} .
$$

B.S. with Localized Nonlinearity

1. [Tentarelli, JMAA '16]:
\rightsquigarrow Existence/nonexistence of constrained minimizers of

$$
\mathcal{E}_{\mathcal{K}}(v):=\frac{1}{2} \int_{\mathcal{G}}\left|v^{\prime}\right|^{2} d x-\frac{1}{p} \int_{\mathcal{K}}|v|^{p} d x
$$

on $\left\{\|v\|_{L}^{2}(\mathcal{G})=\mu>0\right\}$, in the L^{2}-subcritical case $p \in(2,6)$.
2. [Serra, Tentarelli, JDE '16], [Serra, Tentarelli, NA '16]:
\rightsquigarrow Existence/nonexistence (respectively) of constrained critical
points of the functional $\mathcal{E}_{\mathcal{K}}(\cdot)$ (in the L^{2}-subcritical case).
3. [Dovetta, Tentarelli, arXiv '18]:
\rightsquigarrow Existence/nonexistence of constrained minimizers of $\mathcal{E}_{\mathcal{K}}(\cdot)$
in the L^{2}-critical case $p=6$ (for a tadpole graph);
\rightsquigarrow Ongoing project.

B.S. with Localized Nonlinearity

	Exponents	Ground	Bound
NLSE	$p \in(2,4)$	- yes, $\forall \mu>0$	(see box below)
	$p \in[4,6)$	- yes if $\mu>\mu_{1}$ - no if $\mu<\mu_{2}$ - unknown if $\mu \in\left[\mu_{2}, \mu_{1}\right]$	- yes (and multiple) if μ is large enough - yes if \mathcal{G} has a loop or two terminal edges - no (with $\lambda \leq 0$) if $\mu<(p / 2)^{2 /(2-p)} \mu_{2}$ - no (with $\lambda \geq 0$) if \mathcal{G} has (at most) one terminal edge and no loops - unknown otherwise
	$p=6$	- yes if $\mu \in\left[\mu_{\mathcal{K}}, \mu_{\mathbb{R}}\right]$ and if no terminal edges and no cycle coverings* - no otherwise	- yes if \mathcal{G} has a loop or two terminal edges - no (with $\lambda \geq 0$) if \mathcal{G} has (at most) one terminal edge and no loops - unknown otherwise
	$p>6$	- unknown	(see box above)

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{align*}
& \imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2), \tag{NLDE}\\
& \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{align*}
$$

Applications: take into account relativistic effects.
\rightsquigarrow [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17], [Haddad, Carr, PHYSD '09-NJP '15].

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
\mathcal{D}:=-\imath c \frac{d}{d x} \otimes \sigma_{1}+m c^{2} \otimes \sigma_{3} \\
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

Applications: take into account relativistic effects.
$\rightsquigarrow ~[S a b i r o v, ~ B a b a j a n o v, ~ M a t r a s u l o v, ~ K e v r e k i d i s, ~ a r X i v ~ ' 17], ~$ [Haddad, Carr, PHYSD '09-NJP '15].

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
\mathcal{D}:=-\imath c \frac{d}{d x} \otimes \sigma_{1}+m c^{2} \otimes \sigma_{3} \\
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

Applications: take into account relativistic effects.
$\rightsquigarrow ~[S a b i r o v, ~ B a b a j a n o v, ~ M a t r a s u l o v, ~ K e v r e k i d i s, ~ a r X i v ~ ' 17], ~$ [Haddad, Carr, PHYSD '09-NJP '15].

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
\mathcal{D}:=-\imath c \frac{d}{d x} \otimes \sigma_{1}+m c^{2} \otimes \sigma_{3} \\
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

Applications: take into account relativistic effects.
$\rightsquigarrow ~[S a b i r o v, ~ B a b a j a n o v, ~ M a t r a s u l o v, ~ K e v r e k i d i s, ~ a r X i v ~ ' 17], ~$ [Haddad, Carr, PHYSD '09-NJP '15].

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
\mathcal{D}:=-\imath c \frac{d}{d x} \otimes \sigma_{1}+m c^{2} \otimes \sigma_{3} \\
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

Applications: take into account relativistic effects.
$\rightsquigarrow ~[S a b i r o v, ~ B a b a j a n o v, ~ M a t r a s u l o v, ~ K e v r e k i d i s, ~ a r X i v ~ ' 17], ~$ [Haddad, Carr, PHYSD '09-NJP '15].

From Schrödinger to Dirac

Recenly, [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17] proposed the study of the NonLinear Dirac Equation (NLDE)

$$
\begin{gathered}
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi \quad \text { on } \mathcal{G} \quad(p \geq 2) \\
\mathcal{D}:=-\imath c \frac{d}{d x} \otimes \sigma_{1}+m c^{2} \otimes \sigma_{3} \\
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

Applications: take into account relativistic effects.
$\rightsquigarrow ~[S a b i r o v, ~ B a b a j a n o v, ~ M a t r a s u l o v, ~ K e v r e k i d i s, ~ a r X i v ~ ' 17], ~$ [Haddad, Carr, PHYSD '09-NJP '15].

Spinors on metric graphs

Since \mathcal{D} is a matricial operator, the first difference with (NLSE) is that (NLDE) has a spinorial nature; namely the unknown is a 2-spinor:

$$
\psi=\left(\psi_{e}\right)=\binom{\varphi}{\eta}: \mathcal{G} \longrightarrow \mathbb{C}^{2}
$$

where $\varphi=\left(\varphi_{e}\right), \eta=\left(\eta_{e}\right)$ are functions on graphs.
Lebesgue: $L^{p}\left(\mathcal{G}, \mathbb{C}^{2}\right):=\left\{\varphi, \eta \in L^{p}(\mathcal{G})\right\}$

$$
\rightsquigarrow \quad\|\psi\|_{L^{p}\left(\mathcal{G}, \mathbb{C}^{2}\right)}^{p}:=\|\varphi\|_{L^{p}(\mathcal{G})}^{p}+\|\eta\|_{L^{p}(\mathcal{G})}^{p},
$$

Sobolev: $H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right):=\left\{\varphi, \eta \in H^{1}(\mathcal{G})\right\}$

$$
\rightsquigarrow \quad\|\psi\|_{H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right)}^{2}:=\|\varphi\|_{H^{1}(\mathcal{G})}^{2}+\|\eta\|_{\mathcal{H}^{1}(\mathcal{G})}^{2} .
$$

However, \mathcal{D} is just formal since it is not defined at the vertices! ...

Kirchhoff-type vertex conditions

To find a suitable s.a. realization of \mathcal{D}

We choose the following:

$$
\mathcal{D} \psi_{l_{e}}=\mathcal{D}_{e} \psi_{e}:=-\imath c \sigma_{1} \psi_{e}^{\prime}+m c^{2} \sigma_{3} \psi_{e}, \quad \forall e \in \mathrm{E}, \quad \forall \psi \in \operatorname{dom}(\mathcal{D})
$$

Kirchhoff-type vertex conditions

To find a suitable s.a. realization of \mathcal{D}

We choose the following:

$$
\mathcal{D} \psi_{l_{e}}=\mathcal{D}_{e} \psi_{e}:=-\imath c \sigma_{1} \psi_{e}^{\prime}+m c^{2} \sigma_{3} \psi_{e}, \quad \forall e \in \mathrm{E}, \quad \forall \psi \in \operatorname{dom}(\mathcal{D})
$$

Kirchhoff-type vertex conditions

To find a suitable s.a. realization of \mathcal{D}

We choose the following:

$$
\begin{gathered}
\mathcal{D} \psi_{\left.\right|_{e}}=\mathcal{D}_{e} \psi_{e}:=-\imath c \sigma_{1} \psi_{e}^{\prime}+m c^{2} \sigma_{3} \psi_{e}, \quad \forall e \in \mathrm{E}, \quad \forall \psi \in \operatorname{dom}(\mathcal{D}), \\
\operatorname{dom}(\mathcal{D}):=\left\{\psi \in H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right): \psi \text { satisties }(\mathrm{KT} 1)-(\mathrm{KT} 2)\right\},
\end{gathered}
$$

Kirchhoff-type vertex conditions

To find a suitable s.a. realization of \mathcal{D}

We choose the following:

$$
\begin{gathered}
\mathcal{D} \psi_{\left.\right|_{e}}=\mathcal{D}_{e} \psi_{e}:=-\imath c \sigma_{1} \psi_{e}^{\prime}+m c^{2} \sigma_{3} \psi_{e}, \quad \forall e \in \mathrm{E}, \quad \forall \psi \in \operatorname{dom}(\mathcal{D}), \\
\operatorname{dom}(\mathcal{D}):=\left\{\psi \in H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right): \psi \text { satisties }(\mathrm{KT} 1)-(\mathrm{KT} 2)\right\},
\end{gathered}
$$

with

$$
\begin{gather*}
\varphi_{e_{1}}(\mathrm{v})=\varphi_{\mathrm{e}_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{KT1}\\
\sum_{e \succ \mathrm{v}} \eta_{e}(\mathrm{v})_{ \pm}=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{KT2}
\end{gather*}
$$

Kirchhoff-type vertex conditions

To find a suitable s.a. realization of \mathcal{D}

We choose the following:

$$
\begin{gathered}
\mathcal{D} \psi_{\left.\right|_{e}}=\mathcal{D}_{e} \psi_{e}:=-\imath c \sigma_{1} \psi_{e}^{\prime}+m c^{2} \sigma_{3} \psi_{e}, \quad \forall e \in \mathrm{E}, \quad \forall \psi \in \operatorname{dom}(\mathcal{D}) \\
\operatorname{dom}(\mathcal{D}):=\left\{\psi \in H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right): \psi \text { satisties }(\mathrm{KT} 1)-(\mathrm{KT} 2)\right\}
\end{gathered}
$$

with

$$
\begin{gather*}
\varphi_{e_{1}}(\mathrm{v})=\varphi_{e_{2}}(\mathrm{v}), \quad \forall e_{1}, e_{2} \succ \mathrm{v}, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{KT1}\\
\sum_{e \succ \mathrm{v}} \eta_{e}(\mathrm{v})_{ \pm}=0, \quad \forall \mathrm{v} \in \mathrm{~V} \backslash \mathrm{~V}_{\infty} \tag{KT2}
\end{gather*}
$$

$\eta_{e}(\mathrm{v})_{ \pm}$stands for $\eta_{e}(0)$ or $-\eta_{e}\left(\ell_{e}\right)$ depending on the orientation of I_{e}.

Kirchhoff-type vertex conditions

One can check (using [Bulla, Trenkler, JMP '90], [Bolte, Harrison, JPA '03],[Post, '08], [C., Malamud, Posilicano, JDE '13]) that:
i) \mathcal{D} is self-adjoint;
ii) the spectrum is absolutely continuous and presents a gap, i.e.

$$
\sigma(\mathcal{D})=\left(-\infty,-m c^{2}\right] \cup\left[m c^{2},+\infty\right)
$$

We call (KT1)-(KT2) Kirchhoff-type vertex conditions.
Why?

1. They identify (as Kirchhoff for $-\Delta$) the free case: no effect at the vertices (which are then mere junctions between the edges).
\rightsquigarrow Introduced by [Sabirov, Babajanov, Matrasulov, Kevrekidis, arXiv '17]
(where are derived by some conservation laws).
2. They converge to the Kirchhoff ones in the nonrelativistic limit.

Quadratic form

Formally, the quadratic form associated with \mathcal{D} should read

$$
\mathcal{Q}(\psi):=(\psi, \mathcal{D} \psi)_{L^{2}\left(\mathcal{G}, \mathbb{C}^{2}\right)}=\frac{1}{2} \int_{\mathcal{G}} \psi \cdot \mathcal{D} \psi d x
$$

with domain $H^{1 / 2}\left(\mathcal{G}, \mathbb{C}^{2}\right):=\left\{\varphi, \eta \in H^{1 / 2}(\mathcal{G})\right\}$.
i) the derivative of a function in $H^{1 / 2}\left(I_{e}\right)$ belongs to $H^{-1 / 2}\left(I_{e}\right)$, which is not the dual of $H^{1 / 2}\left(I_{e}\right)$ if I_{e} is bounded;
ii) $H^{1 / 2}\left(I_{e}\right) \nrightarrow C^{0}\left(I_{e}\right) \Rightarrow$ cannot "just add" a boundary condition \rightsquigarrow as for $-\Delta$, where the definitions of the quadratic form and its domain are immediate, i.e.

$$
\frac{1}{2}\left\|v^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}, \quad \text { with domain } \quad H^{1}(\mathcal{G})^{\prime \prime}+\prime(\mathrm{K} 1)
$$

Quadratic form

\rightsquigarrow There exists U unitary that transforms \mathcal{D} into a multiplication operator f on $L^{2}(M, d \mu)$.
\rightsquigarrow Hence, $\mathcal{Q}(v):=\frac{1}{2}(U v, f U v)_{L^{2}(M, d \mu)}$ and

$$
\operatorname{dom}(\mathcal{Q}):=\left\{\|\sqrt{|f|} U v\|_{L^{2}(M, d \mu)}<\infty\right\} .
$$

This could seem quite abstract, but, by standard Interpolation Theory,

$$
\operatorname{dom}(\mathcal{Q})=\left[L^{2}(\mathcal{G}), \operatorname{dom}(\mathcal{D})\right]_{\frac{1}{2}}
$$

and

$$
H^{1 / 2}\left(\mathcal{G}, \mathbb{C}^{2}\right)=\left[L^{2}(\mathcal{G}), H^{1}\left(\mathcal{G}, \mathbb{C}^{2}\right)\right]_{\frac{1}{2}}
$$

$$
\operatorname{dom}(\mathcal{Q}) \hookrightarrow H^{1 / 2}\left(\mathcal{G}, \mathbb{C}^{2}\right) \hookrightarrow L^{p}\left(\mathcal{G}, \mathbb{C}^{2}\right) \quad(2 \leq p<\infty)
$$

Back to nonlinear

Now, we have a precise meaning for (NLDE)

$$
\imath \frac{\partial \Psi}{\partial t}=\mathcal{D} \Psi-|\Psi|^{p-2} \Psi
$$

where \mathcal{D} is the Dirac operator with Kirchhoff-type vertex conditions.
Goal: bound states, that is solutions of the form

$$
\Psi(t, x):=e^{-\imath \omega t} \psi(x), \quad \omega \in \mathbb{R}
$$

Problem: we cannot search for costrained minimizers since, the associated

$$
\mathcal{E}(\psi):=\mathcal{Q}(\psi)-\frac{1}{p} \int_{\mathcal{G}}|\psi|^{p} d x
$$

is unbounded below, even if one fixes the L^{2}-norm
\rightsquigarrow due to the spectral properties of \mathcal{D}, precisely to the presence of an infinite negative portion of the spectrum.

Main results: B.S. with localized nonlinearities

In addition, we decided to first study the case of the localized nonlinearity; that is, to search for

Definition - B.S. of the NLDE with L.N.
A B.S. of the (NLDE) with L.N. is a spinor $\psi \not \equiv 0$ s.t.:
i) $\psi \in \operatorname{dom}(\mathcal{D})$;
ii) there exists $\omega \in \mathbb{R}$ s.t.

$$
\mathcal{D}_{e} \psi_{e}-\chi_{\mathcal{K}}\left|\psi_{e}\right|^{p-2} \psi_{e}=\omega \psi_{e}, \quad \forall e \in \mathrm{E}
$$

Then, we proved:
Theorem 1 [T.B.C., SIMA '19]
Let $\mathcal{K} \neq \emptyset$ and let $p>2$. Then, for every
$\omega \in\left(-m c^{2}, m c^{2}\right)=\mathbb{R} \backslash \sigma(\mathcal{D})$, there exists infinitely many (distinct pairs of) B.S. of frequency ω of the (NLDE) with L.N..

Main results: nonrelativistic limit

By the definition of \mathcal{D}, the B.S. obtained via Theorem 1 depend on the relativistic parameter c (the mass m) and the frequency ω :
\rightsquigarrow meant as B.S. at (a fixed value) speed of light c and frequency ω.

Theorem 2 [T.B.C., SIMA'19]
Let $\mathcal{K} \neq \emptyset, p \in(2,6)$ and $\lambda<0$. Let also $\left(c_{n}\right)$ and $\left(\omega_{n}\right)$ be two real sequences such that

$$
0<c_{n}, \omega_{n} \rightarrow \infty, \quad \omega_{n}<m c_{n}^{2}, \quad \omega_{n}-m c_{n}^{2} \rightarrow \frac{\lambda}{m}
$$

If $\left\{\psi_{n}=\left(\varphi_{n}, \eta_{n}\right)^{T}\right\}$ is a sequence of B.S. of frequency ω_{n} of the (NLDE)
with L.N. at speed of light c_{n},

$$
\varphi_{n} \rightarrow u \quad \text { and } \quad \eta_{n} \rightarrow 0 \quad \text { in } \quad H^{1}(\mathcal{G})
$$

where u is a B.S. of frequency λ of the (NLSE) with L.N.

Remarks

B.S. EXISTENCE

1. First variational result on the B.S. of the (NLDE) on metric graphs.
2. Differences with respect to the (NLSE) on graphs:
i) one cannot search for constrained minimizers of a proper energy functional, since the kinetic part \mathcal{Q} is unbounded from below;
ii) one cannot use the adaptations of direct methods of calculus of variations introduced for the (NLSE);
iii) \mathcal{Q} is strongly indefinite in sign:
\rightsquigarrow more refined tools of Critical Point Theory;
\rightsquigarrow more complex geometry of the functional (linking);
iv) the spinorial nature and the implicit definition of \mathcal{Q} :
\rightsquigarrow one cannot use of the techniques of rearrangements and "graph surgery" developed for (NLSE).

Remarks

3. It is necessary to adapt classical techniques for (NLDE) on standard domains (e.g. [Rabinowitz, '80], [Esteban, Séré, CMP '95], [Struwe, '08]).

NONRELATIVISTIC LIMIT

1. Actually, the B.S. converge to the (NLSE) with a pre-factor $2 m$ in front of the nonlinearity.
2. Theorem 2 holds just in the L^{2}-subcritical case $p \in(2,6)$.
3. As a byproduct, Theorem 2 is an existence result for the (NLSE) parametrized by λ and not by L^{2}-norm.
4. The meaning of the nonrelativistic limit is to investigate what occurs when the relativistic effects become negligible (i.e. $\left.c_{n} \rightarrow \infty\right)$:
\rightsquigarrow the convergence to (NLSE) is a rigorous justification of the physical intuition.
\rightsquigarrow also justifies Kirchhoff-type vertex conditions.
